Comparative gene expression profile of mouse carotid body and adrenal medulla under physiological hypoxia.

نویسندگان

  • M D Ganfornina
  • M T Pérez-García
  • G Gutiérrez
  • E Miguel-Velado
  • J R López-López
  • A Marín
  • D Sánchez
  • C González
چکیده

The carotid body (CB) is an arterial chemoreceptor, bearing specialized type I cells that respond to hypoxia by closing specific K+ channels and releasing neurotransmitters to activate sensory axons. Despite having detailed information on the electrical and neurochemical changes triggered by hypoxia in CB, the knowledge of the molecular components involved in the signalling cascade of the hypoxic response is fragmentary. This study analyses the mouse CB transcriptional changes in response to low PO2 by hybridization to oligonucleotide microarrays. The transcripts were obtained from whole CBs after mice were exposed to either normoxia (21% O2), or physiological hypoxia (10% O2) for 24 h. The CB transcriptional profiles obtained under these environmental conditions were subtracted from the profile of control non-chemoreceptor adrenal medulla extracted from the same animals. Given the common developmental origin of these two organs, they share many properties but differ specifically in their response to O2. Our analysis revealed 751 probe sets regulated specifically in CB under hypoxia (388 up-regulated and 363 down-regulated). These results were corroborated by assessing the transcriptional changes of selected genes under physiological hypoxia with quantitative RT-PCR. Our microarray experiments revealed a number of CB-expressed genes (e.g. TH, ferritin and triosephosphate isomerase) that were known to change their expression under hypoxia. However, we also found novel genes that consistently changed their expression under physiological hypoxia. Among them, a group of ion channels show specific regulation in CB: the potassium channels Kir6.1 and Kcnn4 are up-regulated, while the modulatory subunit Kcnab1 is down-regulated by low PO2 levels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acute Oxygen Sensing in Heme Oxygenase-2 Null Mice

Hemeoxygenase-2 (HO-2) is an antioxidant enzyme that can modulate recombinant maxi-K(+) channels and has been proposed to be the acute O(2) sensor in the carotid body (CB). We have tested the physiological contribution of this enzyme to O(2) sensing using HO-2 null mice. HO-2 deficiency leads to a CB phenotype characterized by organ growth and alteration in the expression of stress-dependent ge...

متن کامل

تأثیر غلظت 1% اکسیژن بر بیان ژن Conexin 43 در سلولهای بنیادی مزانشیمی مشتق از مغز استخوان موش (C57(BL/6

Introduction: Oxygen tension is one of the most important stimuli in stem cell biology. In this study, we investigate the considerable influence of hypoxia on CX43 gene expression as one of the most important gap junction on the surface of mesenchymal stem cells. Methods: Mesenchymal stem cells were isolated from C57BL/6 mouse bone marrow and cultured in DMEM medium under low oxygen tension (...

متن کامل

Magnesium deficiency causes loss of response to intermittent hypoxia in paraganglion cells.

Magnesium deficiency is suggested to contribute to many age-related diseases. Hypoxia-inducible factor 1alpha (HIF-1alpha) is known to be a master regulator of hypoxic response. Here we show that hypomagnesemia suppresses reactive oxygen species (ROS)-induced HIF-1alpha activity in paraganglion cells of the adrenal medulla and carotid body. In PC12 cells cultured in the low magnesium medium and...

متن کامل

Mutual antagonism between hypoxia-inducible factors 1α and 2α regulates oxygen sensing and cardio-respiratory homeostasis.

Breathing and blood pressure are under constant homeostatic regulation to maintain optimal oxygen delivery to the tissues. Chemosensory reflexes initiated by the carotid body and catecholamine secretion from the adrenal medulla are the principal mechanisms for maintaining respiratory and cardiovascular homeostasis; however, the underlying molecular mechanisms are not known. Here, we report that...

متن کامل

Deletion of the von Hippel–Lindau gene causes sympathoadrenal cell death and impairs chemoreceptor-mediated adaptation to hypoxia

Mutations of the von Hippel-Lindau (VHL) gene are associated with pheochromocytomas and paragangliomas, but the role of VHL in sympathoadrenal homeostasis is unknown. We generated mice lacking Vhl in catecholaminergic cells. They exhibited atrophy of the carotid body (CB), adrenal medulla, and sympathetic ganglia. Vhl-null animals had an increased number of adult CB stem cells, although the sur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of physiology

دوره 566 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2005